Release-independent short-term facilitation at GABAergic synapses in the olfactory bulb.

نویسنده

  • Z Nusser
چکیده

Neurones of the olfactory bulb are innervated by GABA-releasing axons and dendrites of diverse origin. Here, I studied GABAergic neurotransmission in juxtaglomerular cells using whole-cell voltage-clamp recordings in acute olfactory bulb slices. Spontaneous IPSCs were fully blocked by the GABA(A) receptor antagonist SR95531 (40 microM) and the sodium channel blocker tetrodotoxin (1 microM). The IPSCs had mean amplitudes of 125+/-86 pA and relatively slow biexponential decay times (tau(1)=4.3+/-1.0 ms (67+/-12%), tau(2)=16.9+/-2.7 ms) at physiological temperatures. Short-term plasticity of evoked IPSCs showed two distinct patterns: depressing (n=4 cells) and facilitating-depressing (n=9). In two cells, postsynaptic responses were mediated by single functional release sites. During a train of stimuli (4 stimuli at 20 Hz), the release probability increased by two-fold, whereas the potency (postsynaptic responses excluding failures) decreased by ~15%. The increase in release probability for the second stimulus in the train also occurred when the first action potential failed to release transmitter. However, the decrease in the potency was only observed if the preceding action potential released transmitter. These results reveal a heterogeneity in the short-term plasticity of evoked IPSCs in juxtaglomerular cells and demonstrate that the short-term facilitation at some GABAergic synapses is independent of release.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Interactions between behaviorally relevant rhythms and synaptic plasticity alter coding in the piriform cortex.

Understanding how neural and behavioral timescales interact to influence cortical activity and stimulus coding is an important issue in sensory neuroscience. In air-breathing animals, voluntary changes in respiratory frequency alter the temporal patterning olfactory input. In the olfactory bulb, these behavioral timescales are reflected in the temporal properties of mitral/tufted (M/T) cell spi...

متن کامل

Signaling between periglomerular cells reveals a bimodal role for GABA in modulating glomerular microcircuitry in the olfactory bulb.

In the mouse olfactory bulb glomerulus, the GABAergic periglomerular (PG) cells provide a major inhibitory drive within the microcircuit. Here we examine GABAergic synapses between these interneurons. At these synapses, GABA is depolarizing and exerts a bimodal control on excitability. In quiescent cells, activation of GABAA receptors can induce the cells to fire, thereby providing a means for ...

متن کامل

A Novel Local Circuit in the Olfactory Bulb Involving an Old Short-Axon Cell

Many local circuit interactions in the olfactory bulb involve atypical dendrodendritic synapses. In this issue of Neuron, Pressler and Strowbridge report a functional analysis of a class of short-axon interneurons in the bulb called Blanes cells. Blanes cells make GABAergic axonal contacts onto granule cells and may mediate a form of local feedforward disinhibition.

متن کامل

Tonic and synaptically evoked presynaptic inhibition of sensory input to the rat olfactory bulb via GABA(B) heteroreceptors.

Olfactory receptor neurons of the nasal epithelium send their axons, via the olfactory nerve (ON), to the glomeruli of the olfactory bulb (OB), where the axon terminals form glutamatergic synapses with the apical dendrites of mitral and tufted cells, the output cells of the OB, and with juxtaglomerular (JG) interneurons. Many JG cells are GABAergic. Here we show that, despite the absence of con...

متن کامل

Synapsin function in GABA-ergic interneurons is required for short-term olfactory habituation.

In Drosophila, short-term (STH) and long-term habituation (LTH) of olfactory avoidance behavior are believed to arise from the selective potentiation of GABAergic synapses between multiglomerular local circuit interneurons (LNs) and projection neurons in the antennal lobe. However, the underlying mechanisms remain poorly understood. Here, we show that synapsin (syn) function is necessary for ST...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Neuropharmacology

دوره 43 4  شماره 

صفحات  -

تاریخ انتشار 2002